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Abstract 

In this paper we develop new techniques to work with small cancellation theory diagrams for 
Artin groups. Using these techniques we examine paths in the Cayley graph of the Artin group. 
For any Artin group G, with semigroup generators d, we define a language L(G) c d*. The 
language L(G) is a set of canonical forms for the Artin group. In the case G is an Artin group of 
extra-large type or a two generator Artin group, we analyze the geometry of the small 
cancellation theory diagrams and show that L(G) is the language of a biautomatic structure 
for G. 

0. Introduction 

The main objective of this paper is to exhibit biautomatic structures for many of the 

Artin groups of infinite type. The class of biautomatic groups was first introduced by 

the authors of [6]. Intuitively, this is the class of groups for which there is a set of finite 

state algorithms containing instructions for constructing any bounded portion of the 

Cayley graph for the group. Many classes of groups are known to have a biautomatic 

structure, among these are finitely generated abelian groups, hyperbolic groups and 

small cancellation groups. For more background on biautomatic groups see 

C6,3,7,81. 
Artin groups were first defined by Brieskorn as a generalization of the braid groups. 

The Artin groups have standard presentation .9’ = (% 192) defined as follows. The set 

of generators % is a finite set {xi 1 i E I}. To each pair i # j E I there is associated a value 

mij E N u 00 , such that each mij > 1 and mij = mji. Let F(X) denote the free group on 

X. For each finite mij the word hijEF(~) is defined to be the string of alternating 

generators xi and xj of length mij starting with Xi* For each finite mij, define 

rij = hij hJi ‘, where h, 1 is the inverse of the word hji in F(X). The set of relators for the 
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presentation 9 is 

8 = (rijlmij # CO}. 

In this paper Artin groups will be denoted by H and are assumed to be given by 
a presentation 9’ = (.%?I W) as defined. 

Associated to each Artin group is a Coxeter group, CH. The Coxeter group is the 
epimorphic image of the Artin group obtained by expanding the set of relators 
9 to include xi” for each i E I. An Artin group H is said to be ofjinite type if CH is 
finite, otherwise it is said to be of injinite type. For the braid group on n strings 
CH is the symmetric group S,. Consequently, the braid groups are Artin groups 
of finite type. 

W. Thurston has shown that the braid groups are biautomatic [S]. This result has 
been extended by Charney [4] to show that all Artin groups of finite type are 
biautomatic. The goal in this paper is to show that many of the Artin groups of infinite 
type are also biautomatic. In [2], Appel and Schupp define two subclasses of the Artin 
groups of infinite type. An Artin group is said to be of large type if all mij > 2, and to 
be of extra-large type if all mij > 3. Notice that extra-large type is a subclass of large 
type which in turn is a subclass of infinite type. The main result of this paper is: 

Theorem A. Artin groups of extra-large type are biautomatic. 

Suppose that H is an Artin group of extra-large type with presentation 
9 = (%lW). The set d = ~Yu%“‘- ’ is called the set of semigroup generators of H and 
d* is the free monoid on d. To prove Theorem A we use a characterization of 
biautomatic given in [6]. This states that H is biautomatic if there is a group language 
L(H) c d* that is both regular and a bicombing of the Cayley graph T,(H). This 
characterization is explained in Section 1. 

In Section 2 we construct a regular ordering < of d* and use the ordering to define 

a group language L(H) c LX@. To show that L(H) is regular we use a lemma. Let L(H) 
denote the compliment of L(H) in ZXZ*. Intuitively, the lemma states that a language 

defined as we have done, by a regular ordering, is regular if each word w E L(H) is close 
to a word VEJZZ* with the properties, v = o in H, and v<o. Two words are close if 
their corresponding paths in the T,(H) are fellow travelers. This is explained in 
Section 1. The word v, with the properties given above, is said to refute the word o. 

Thus, L(H) is regular if each word w in L(H) is refuted. 
In order to compare paths in r,(H) we use equality diagrams from small cancella- 

tion theory. Artin groups of extra-large type do not in general satisfy small cancella- 
tion hypotheses. However, small cancellation techniques can be used to analyze these 
groups. Both Sections 3 and 4 briefly review the necessary background concerning the 
study of Artin groups via small cancellation theory. In Section 5, we define thin 
equality diagrams and exhibit some relations with the geometry of T”(H). In Section 6 
C(4)-T(4) equality diagrams are examined. The bulk of the proof of Theorem A is 
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contained in Sections 7-9, here it is shown that all words in L(H) are refuted. This is 
done in stages by examining words which could label the boundary of more and more 
complicated equality diagrams. Finally, in Section 10 we prove that L(H) is regular 
and a bicombing of T,(H). 

1. Definitions 

In this paper we will give only the essential definitions. The reader can refer to 
[6, 1 l] for more details concerning automatic groups and small cancellation theory, 
respectively. 

Suppose that G is a finitely generated group given by the presentation (!ZjB). 
We will always assume that the set of generators !Z is finite. Let & = %u$Y1 be 
the set of semigroup generators. Let F(X) be the free group on the set %, and let 
d* be the free monoid on the set d. We can think of d as an alphabet and d* as 
the language of all finite words over d. In this context, F(X) c d* is the language 
of all words over d which are freely reduced. For any element o E d* define i3 E G to 
be the image of w in the group G under the endomorphism &* + G defined by the 
presentation. 

The Cayley graph for G with respect to the set ~2, denoted by T,(G), is a directed 
labeled graph. The vertex set is G and there is an edge labeled by a from g to ga for 
each a E ~2 and gE G. A metric is defined on T,(G) by considering each edge as 
isometric to the unit interval. The distance between points x and y is denoted by 
d(x, y). With this metric T,(G) is a geodesic metric space. 

The length of a word o in d* is denoted by IwI. For each word wed* there is 
a unique edge path in the Cayley graph from the identity to ii, which travels at unit 
speed along the edges labeled by the word w. We will refer to paths in T’(G) by their 
label. This should not cause any problems, the context will make the distinction clear. 
For notational convenience we define w(t) = c5 for t 2 1 w I. So that w maps the infinite 
ray [0, co] to T,(G). 

Suppose that w(t) and v(r) are two paths in the Cayley graph. The paths are said to 
be k-fellow travelers if for all t 2 0, 

d(w(t), v(t)) I k. 

Another measure of the distance between the paths is given by Hausdorff neighbor- 
hoods. The path w is said to lie in a k-Hausdorflneighborhood of the path v if for all 
t 2 0 there is a number s such that 

d(w(t), v(s)) s k. 

A word in z&‘* is called a geodesic if it is shortest among all words representing the 
same group element. For each geodesic word the corresponding path is a geodesic in 
T’(G). The following proposition can be found in [6]. 
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Proposition 1. Let w and v be two geodesic paths, in a geodesic metric space, which start 
a distance 1 apart. If w and v lie in a k-Hausdorff neighborhood of each other then CO and 
v are (2k + Q-fellow travelers. Conversely, if o and v are k-fellow travelers, then the two 
paths lie in a k-Hausdorff neighborhood of each other. 

A language L c d* is called a normal form of G if the natural map L + G is 
surjective. This implies that for any group element gE G there is at least one word in 
L representing a path in T,(G) from the origin to the vertex g. A normal form L c &* 
is called a bicombing of G if there exist a constant k satisfying the following property. 

- 
Given a, b E &u8 and o, v E L with wa = G in G then the path w, starting at the origin 
in T’(G), and the path v, starting at the vertex 5 in T’(G), are k-fellow travelers. (In 
other recent papers, some authors may refer to this type of bicombing as a bounded 
bicombing). 

A language is said to be regular if it is accepted by a finite state automaton. For 
more details on finite state automata and regular languages see [6] or [lo]. The 
standard definition of a biautomatic group is based on a set of finite state automata 
which are used to compare words represent near by group elements. We will use 
a more geometric characterization given by the following proposition from [6]. 

Proposition 2. Let G be a group with semigroup generators &. The group G is 
biautomatic ifthere is a regular language L c &‘* that is a bicombing of T,(G). In this 
case we say that L is the language of a biautomatic structure for G. 

2. The language for Artin groups 

Let H = (%lW) be an Artin group. Let d = ?ZuK’ be the set of semigroup 
generators. In this section we define a language L(H) which is a subset of d*. In the 
rest of the paper we will show that L(H) is a regular language and a bicombing of H, 
for two families of Artin groups: two generator Artin groups, and Artin groups of 
extra-large type. By Proposition 2, this will show that for these Artin groups L(H) is 
the language of a biautomatic structure for the group H. 

Any word w in JZZ* can be written uniquely as a product of powers of semigroup 
generators in the form a? a? . . . a? where each ai E d, ni E N, and no consecutive pair 
of ai’s are equal. We call the subwords a? the syllables of the word w. Define 110 11 to be 
the number of syllables in the word w. 

Assign to each generator in .!Z a distinct color. Assign to each inverse generator 
x;’ ~37’ the same color as the generator Xi E._%. Because syllables are powers of 
a single semigroup generator, each syllable of a word has assigned colors. 

To each word w E &* we assign a string of O’s and 1’s. This binary string is denoted 
by S?(o). There is exactly one digit in ?#(a) for each letter in w. The string W(o) is 
calculated by mapping each letter of o to either 0 or 1, as defined below. 
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Definition (B(o), the binary string associated with 0). Each letter of o is mapped to 
(0, l} by the following procedure. All letters that are not the last letter of a syllable are 
mapped to 1. The last letter of the first and last syllable are mapped to 0. Suppose a, is 
the nth letter of o and the last letter of syllable k. Let %0(k) be the color of the kth 
syllable. The letter a, is mapped to 

0 if VO(k - 1) = WO(k + 1) and 

1 otherwise. 

The binary number 98(w) is the number whose highest digit corresponds to the first 
letter of o, second highest digit corresponds to the second letter of o, and so on. 

Choose an ordering of the elements of zt!. This induces a lexicographic ordering, 
<r, of d*. The ordering used to define the bicombing of the Artin groups is created 
from the word length, the binary numbers, and the lexicographic ordering. 

Definition (<, a total ordering of XI*). Given two words o, ve&‘* we say that 
o precedes the word v, denoted by o<v, if 

(1) I4 < Iv1 or, 
(2) 1~1 = Iv1 and &5?(o) < g(v) or, 
(3) lwl = lvl, g(w) = B(v) and o+v. 
An ordering < is said to be regular if the language L, = ((v, CO) I vim} is regular. 

For our purposes it is safe to think of L, as a sublanguage of &‘* x d*. But in fact, 
a more rigorous approach would consider the embedding of JJ* x xZ* in the padded 
language associated with d*. For simplicity, we will avoid this technicality and refer 
the reader [6,3] for information on padded languages. 

Lemma 3. The ordering < is regular. 

Proof. Suppose that M is a machine reading a word of &*. To determine the digit 
corresponding to a given letter, a, the machine only needs to know the color of the last 
syllable and the color of the next letter. If the next letter has the same color as a then 
a is not the end of a syllable and is therefore mapped to 1. If the next letter has 
a different color than a then the machine can compare the colors of the last syllable 
and the next letter to determine whether a is mapped to 1 or 0. Therefore, the machine 
would need only a finite memory. Therefore, we can construct a finite state automaton 
that can compare the binary strings of two words of JJZ*, and accepts the language 
L d < = ((o4 4 I w4 < WV)). w e can also construct an automaton which accepts 
the language La = = {(CD, v)I&?(w) = B(v)}. Therefore, Lts < and LB = are regular 
f;;y. The three languages L, = {(o,v)llol c Iv], L = = {(w,v)l~o~ = IvI}, 

lex< = {bv)l~-w~ are regular by standard result in language theory. Regular 
languages are closed under the Boolean operations of intersection and union. 
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Therefore, the language 

L, = L.u(L=nL,,)u(L=nL,=nL,,,,) 

is regular. 0 

Definition (The language L(H)). The language L(H) c d* consists of all < minimal 
representatives for each group element 

L(H) = {w~&*lw is < minimal for W}. 

Because the lexicographic ordering is total the language L(H) will have exactly one 
representative for each group element. Thus, L(H) is a set of canonical forms for the 
Artin group H. Furthermore, note that each word in L(H) is shortest among all words 
in &‘* representing the same group element. Thus, non-geodesic words do not occur 
as subwords of elements of L(H). There is an equally important set of non-admissible 
subwords. These words are called the excessive words of H. They do not appear as 
subwords because there are equivalent words of equal length which precede them in 
the ordering <. Before defining the set of excessive words it will help to consider the 
motivating example, far-corners. 

Let rij be a relator of H. Let y be a subword of a cyclic permutation of rij, with 
length mij. We call y a half relator of H. Suppose that y begins with the semigroup 
generator a. The word ay is called a type one fur-corner. Let b be the second letter of 
y and let c be any other letter in d with color distinct from both a and b. Words of the 
form 

bc”y bC”y Bc”y BC”y. 

are called type twofur-corners. (The notation C denotes the other semigroup generator 
of the same color as c.) The next lemma shows that these words never occur as 
subwords in elements of L(H). 

Lemma 4. Let H be any Artin group. Then far-corners will not appear us subwords of 
an element of L(H). 

Proof. Suppose that o contains a type one far-corner subword. Thus, o contains 
a subword uy, with y a half relator starting with a. First examine the case when y is 
a half relator of letters all with the same sign as a. Suppose that b is the second letter in 
the half relator y. Thus, y has the form ubu . . . of finite length corresponding to the 
appropriate mij value. 

By the form of the relator there is another half relator word starting with b which 
represents the same group element as y. Call this word y’. It will have the form bub . . . 
Let v be the word obtained from w by replacing the occurrence of y in o by y’. Let 
c( and 5 be words in &‘* such that 

o = au(ubu . . . )l and v = au(bub . . . )& 
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In the strings 99(o) and 28(v) the digits associated with the letters of a will be the 
same because these values only depend on the initial subword aa which is the same in 
both o and v. We will concentrate on the digits of W(w) and g(v) which are associated 
with the first two letters of the far-corner. First consider the case that the second to 
last syllable of au has the same color as b. In this case the letters au in o go to the digits 
1, 0, but the corresponding letters ab of the word v go to 0, 0: 

w = . ..uu... and B(o) = . . . lo... 

v = . ..ub . . . and 99(v) = . . . 00 . . . 

The words o and v both have the same length and a(v) < B(o), therefore v<o. The 
same argument holds if LX is the empty word or is a single syllable of the same color 
as a. 

When the next to last syllable of rxu is not the same color as b, the letters au in w go 
to the digits 1, 1, but the corresponding letters ub of the word v go to 1, 0: 

w = . ..uu... and S?(o) = . . . 11 . . . 

v = . ..ub... and B(v) = .__ lo... 

Therefore again, 9(v) < BJ(o) and because the words have the same length, v<w. 
The argument above is based on the ordering of sZ* and the ordering depends only 

on the color of letters and not on their parity. Therefore, the proof will hold for y any 
half relator. In particular, we did not need to assume that the letters of y all had the 
same sign as a. 

Now consider the type two far-corners. Let w be a word with a type two far-corner 
subword, f. For notational purposes, suppose thatfhas the form, bc”(ubu . . . ). Let v be 
the word which is obtained by replacing the occurrence of the half relator, ubu . . . , in 
the word o by the corresponding half relator starting with b. Let IX and [ be the 
subwords of o and v such that 

w = abc”(ubu . . . )C and v = abc”(bub . . . )[. 

All the letters of o and v, up to but not including the last c of the far-corner, are 
mapped to the same digit in both strings. Consider the last c in the far-corner. In o it is 
mapped to a 1, but in the word v it is mapped to a 0. Therefore, since the words are the 
same lengths we have v<w. 

Note again that we did not make essential use of the notation and the proof 
generalizes to all type two far-corners. 0 

The more general class of excessive words have all the essential features of far- 
corner words needed in the proof above. Let a, b and c be letters of d each having 
distinct colors. Let A, B, and C be the semigroup generators corresponding to the 
inverses of a, b and c. Let y and y’ be any words in (u, A, b, B}* such that 

(1) 7 = 7’ in the group H, 

(2) IYI = IY’L 
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(3) y starts with a, 
(4) y’ begins with ba, or bA. 

Then the following words are called excessive words: 

ay bc”y bC”y Bc”y BC”?. 

Just as in the case for the far-corners we can replacing the subword y with y’ in the 
excessive word. This creates a new word which represents the same group element but 
is lower in the ordering. Therefore, we have the following lemma. 

Lemma 5. Let H by any Artin group. Excessive-words will never appear as subwords in 
elements of L(H). 

The words y and y’ play a crucial role in proving Theorem A. To avoid confusion we 
assign them names. The word y is called the high word and the word y’ is called the low 
word. In a far-corner the high word and the low word are the half relators. Lemma 5 
can now be restated as: 

Corollary 6. If o contains an excessive subword and v is the word obtained by replacing 
the associated high word with the associated low word then v<o and W = V. 

3. Small cancellation theory and B-diagrams 

The material in this section is meant to highlight the concepts from small cancella- 
tion theory that will be used in the rest of this paper. For more details the reader can 
refer to [ll, 21. We will use the standard notation and terminology that is used in 
these two works. 

Let G be a group with presentation (Xl%?). The set of relators is said to be 
symmetrized if each relator is cyclically reduced and the set is closed under cyclic 
permutation and inversion. When using techniques of small cancellation theory, we 
assume that all sets of relators are symmetrized. An g-diagram M is a diagram in the 
plane consisting of regions, edges, and vertices. Every region is homeomorphic to 
a disk and is bounded by edges. Every edge in M is labeled by a word from the free 
group on %, and the label reading around the boundary edges of any region of M is 
a reduced element of W. Suppose that D1 and D2 are two regions in an 5%diagram 
M which share an edge e. The diagram M is unreduced if the label reading around 
D1 in the clockwise direction, starting at the edge e, and the label reading around D2 in 
the counterclockwise direction, starting at the edge e, are the same. The diagram M is 
said to be reduced if this situation never occurs. In an unreduced diagram it is always 
possible to remove the two regions D1 and D2 and sew the remaining edges together to 
create a new diagram with the original boundary word. Because we are primarily 
concerned with the boundary words, we can and will assume that all W-diagrams are 
reduced. A fundamental result of small cancellation theory is: 
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Proposition 7. For any word w E SP such that 0 = 1 in the group G = (%~9?) there is 
a connected, simply connected S?-diagram which has boundary labeled by the word w. 
Conversely, if there is a connected, simply connected W-diagram with boundary labeled 
by the word w, then W = 1 in the group G = (%[B). 

We will assume that all W-diagrams are connected and simply connected. 
In order to discuss W-diagrams we need some notation and terminology. The 

following is the standard notation and terminology as appearing in [ 11,2]. Suppose 
M is an W-diagram with vertex v, edge e, and region D. The boundary of M is denoted 
by 2JM. The boundary of D is denoted by aD. The vertex v is called a boundary vertex if 
v E aM, otherwise, v is called an interior vertex. The degree of v, d(v), is the number of 
edges incident to v counting multiplicity. The edge e is called a boundary edge if e E aM, 
otherwise, e is called an interior edge. The region D is called a boundary region of M if 
aDnaM # 8; otherwise, D is called an interior region. A boundary region D is called 
almost interior if aD contains no boundary edges. The boundary region D is called 
a simple boundary region if aDr\aM is a consecutive portion of aM, and a non-simple 
boundary region otherwise. The degree of D, d(D), is the number of edges, counting 
multiplicity, in any boundary cycle of D. The interior degree of D, i(D), is the number of 
interior edges, counting multiplicity, in any boundary cycle of D. 

A word p E F(Z) is called a piece if there exists distinct elements rI and r2 of 9I! such 
that p is a prefix of both rl and r2. Pieces are exactly the set of subwords of relators 
that freely cancel in the product of two non-inverse relators. There are properties of 
the presentation for a group that limit the geometry of W-diagrams whose boundary 
word is trivial in the group. Two of these properties are C(p) and T(q). The set of 
relators 9 is said to satisfy: 

C(p): if no element r E W can be written as a product of fewer than p pieces, 
T(q): Ifgiven3<n<qandr,,r,, . . . , r, elements of W so that no successive pair 

riri + 1 forms an inverse pair (including r,rl ), at least one of the products rlr2, 
r2r3, . . . ,r,- lr,, rnrl is freely reduced without cancellation. 

If an W-diagram contains an interior vertex of degree two then the two edges can be 
combined to form a single edge labeled by the product of the two original labels. 
Therefore we will assume that all interior vertices have degree greater than two. In 
a reduced R-diagram the interior edges are always labeled by pieces. Another 
fundamental result from small cancellation theory is: 

Proposition 8. Let M be a reduced g-diagram: 
(1) The assertion W satisfies C(p), implies that i(D) 2 p for every almost interior 

region D of M. 
(2) The assertion 6%’ satisfies T(q), implies that d(v) 2 q for every interior vertex v 

ofM. 



24 D. Peifer/Joumal of Pure and Applied Algebra 110 (1996) 15-56 

D2 

Fig. 1. A compound strip. 

We will say that a diagram is C(p)-T(q) if it satisfies the conclusions of Proposition 8. 
In this paper we are especially interested in C(4)-T(4) diagrams. Gersten and Short 

have shown that all groups that have a C(4kT(4) presentation are biautomatic, see 
[7,8]. In general, the presentation for Artin groups does not satisfy C(4bT(4). 
However, because of the specific form of the relators 9 we are able to use small 
cancellation techniques similar to those used in the C(4)-T(4) case. Our investigation 
focuses on the boundary regions of W-diarams. Therefore, we have some special 
terminology for boundary regions of C(4kT(4) diagrams. Suppose M is a C(4)-T(4) 
diagram and D is a simple boundary region of M. The region D is called a singleton strip 
if i(D) = 0 or 1, a corner if i(D) = 2, a side if i(D) = 3, and an inner corner if i(D) = 4. 

We consider sequences of boundary regions which are encountered consecutively 
when transversing the boundary of M in one of the two directions. A special case of 
such a sequence is a compound strip. A compound strip of M is a sequence of boundary 
regions {DI, . . . , D,,} encountered consecutively when transversing the boundary of 
M in one of the two directions such that each Di is a simple boundary region, the 
region Di shares an edge with Di + 1, D1 and D, are corners, and D2, . . . , D, _ 1 are sides 
(see Fig. 1). 

One of the most useful tools in small cancellation theory is Lyndon’s curvature 
theorem. This is a combinatorial version of the Gauss-Bonet curvature theorem. For 
details concerning Lyndon’s curvature theorem see [11] or [12]. Instead of stating 
Lyndon’s curvature theorem in its most general form we state three corollaries to the 
theorem which apply to the specific situations we are concerned with. In the following 
corollaries summations will be taken over regions and vertices. The notation 

I* signifies that the sum is over simple boundary regions, 
1’ signifies that the sum is over boundary vertices or boundary regions and 
1” signifies that the sum is over interior vertices or interior regions. 

Corollary 9 (Lyndon and Schupp [l 11). ZfM is a connected, simply connected diagram 
satisfying C(4kT(4) which has more than one region, then x*(3 - i(D)) 2 4. Zf M is 
a connected, simply connected diagram satisfying C(6) which has more than one region, 
then x*(4 - i(D)) 2 6. 

A single edge sticking out of a diagram is called a spike. Notice that the tip of a spike 
will be labeled by inverse pair. Therefore, if the boundary word is cyclically reduced 
then there will not be spikes in the diagram. 
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Corollary 10 (Appel [ 11). Let M be a connected simply connected C(4)-T(4) diagram 
ith no spikes, no non-simple boundary regions and more than one region. Then 

4 = x*(3 - i(D)) + co (4 - i(D)) + c O(4 - d(u)). 

In a diagram two distinct strips can both share a region. This only happens when 
the shared region is a corner region. Two strips are said to be disjoint if there are no 
shared regions. 

Corollary 11 (Appel and Schupp [2]). Let M be a connected, simply connected 
C(4kT (4) diagram with no spikes and more than one region. Then one of the following is 
true: 

(1) M contains at least two singleton strips. 
(2) M contains exactly one singleton strip and at least two compound strips. 
(3) M contains no singleton strips and at least four distinct compound strips. 

In any of the above cases M contains at least two disjoint strips. 

We are concerned primarily with paths that lie along the edges and vertices of the 
B-diagrams. These paths correspond to words in the free monoid d*. Therefore, 
when referring to a path through an .$&diagram we will always assume the paths lie in 
the l-complex of the diagram. We can think of the l-complex of an B-diagram as 
a metric space by endowing it with the word metric. 

We conclude this section with some terminology for the l-complex. Suppose that 
D is a region of an &?-diagram M. The term point of dD refers to any point along dD. 
Thus, vertices are only a few of the points. The exterior of D, ext(D), is 8Dn8M. 
The open exterior of D, openext(D), is the topological interior of ext(D). The base of 
D, base(D), is 8D - openext(D). The open base of D, openbase( is 8D - ext(D). 
When there is a question as to the diagram concerned, it will be included in the 
parentheses. For example, the exterior of D with respect to the diagram M is denoted 
by ext(D, M). 

4. Small cancellation theory and Artin groups 

Let H be an Artin group given by the presentation (Xl&?) described in the 
introduction. Associated with every Artin group are a number of two generator Artin 
groups. These groups play a fundamental role in this paper. For each pair of 
generators (xi,xj), denote by Hij the two generator Artin group given by the one 
relator presentation (xi,Xjlrij). This group satisfies the condition C(4)-T(4). For 
notational purposes it will be convenient to let 9, denote the symmetrized set of 
relators corresponding to rij. Many of the results in this section concern the two 
generator Artin groups. 

The pieces for the group Hij are the alternating strings of generators of length less 
than mij and the alternating strings of inverse generators of length less than mij. For 
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example the two generator Artin group with presentation 

-1 <x1,xzIx1xzx1xzx1 
-1 -1 

G’x1 x2 > 

has the following set of pieces: 

Xl x2 
-1 

Xl 
-1 

x2 

x1x2 x2x1 
-1 

x;lx2 
-1 -1 

x2 Xl 

x1x2x1 
-1 -1 -1 

X2X1% Xl x2 Xl 
-1 

x;lx;lx2 . 

There are two points on the boundary of the region which separate letters of 
different signs. These points are called the poles of the region D. (Appel and Schupp 
[2] call these separating vertices.) An important feature of the poles is that, with 
respect to the word metric, the poles divide the boundary of the region exactly in half. 
Each half labeled by a half relator with letters all of the same sign. Because interior 
edges of an Wtj-diagram are always labeled by pieces, poles will never occur within an 
interior edge, rather only at the vertices. Exhibiting the position of the poles in an 
W-diagram produces a way to compare lengths of paths. 

The following three lemmas state some basic results about the positioning of 
poles in an 9ij-diagram for the two generator Artin groups. The proofs are left to the 
reader. 

Lemma 12. Let M be an Wij-diagram. Let a be a freely reduced word that labels the 
boundary of M over the boundary vertex v of degree three. Then the vertex v is a polefor 
exactly one of the two adjoining regions. 

Lemma 13. In a reduced 9ij-diagram, iftwo regions share an edge e then neither of the 
vertices at the ends of e can be poles for both regions. 

Lemma 14. If v is an interior vertex of degree four in an Wij-diagram then either v is not 
a pole for any of the four adjoining regions or v is a pole for two non-adjacent regions. 

Let &ij be the set of semigroup generators for Hi,. Recall that the number of 
syllables in o is denoted 11 o 11. The next lemma is from [Z]. It shows that the word 
labeling the exterior of a strip is longer then the word labeling the base. 

Lemma 15 (Appel and Schupp [2]). Suppose that I” is a strip of an g&,-diagram M. 
Let co be the label on ext(Y) and v be the label on base(r). Then 

(1) IlOll 2 mij + 19 
12) loI 2 Id + 2, 
(3) lbll 2 llvll + 2, and 
(4) some region of 2” has both its poles on ext(2”). 

If 15 = 1 in Hij then there is a reduced Wij-diagram M for o. By Corollary 11, either 
M is one region or M has at least two distinct strips. Since the length of the label on 
the exterior of a strip exceeds mij by at least one, we have the following lemma. 
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Lemma 16. If O = 1 in Hij then 101 2 2mij. Furthermore, if ICO 1 = 2mij then any 
Wij-diagram labeled by o is a single region and o is a relator. 

In general, the Artin group H = (Xl9) on more than two generators does not 
satisfy the condition C(4kT(4). It is however possible that an W-diagram for a word 
equal to the identity in G may satisfy C(4kT(4) even though the group does not. This 
is one of the main tricks in this paper. For the boundary words we are concerned with 
we are able to construct C(4)-T(4) diagrams. The next proposition extends the result 
of Appel and Schupp, stated in Lemma 15, to the general Artin groups. 

Proposition 17. Let H = (%I 6%) be any Artin group and let M be a C(4tT (4) reduced 
g-diagram. Let r be a strip of M, let u be the label on ext(Y) and v be the label on 
base(Y). Then 

(1) 101 2 Iv1 + 2 and 

(2) lbll 2 llvll + 2. 

Proof. The strip Y is a finite sequence of simple boundary regions (Oi}. Each of the 
regions Di is labeled by one of the two generator relations. Divide Yinto subsequences 
Yj as follows. Let Y1 be the longest initial subsequence of Y which consists of regions 
all labeled by the same relator. Let Yj be the longest initial subsequence of 
r- (Y,, X-2, . . . , I”- 1) which consists of regions all labeled by the same relator. 

To prove the proposition we use induction on the number of subsequences of 
Y defined in the above fashion. If Y has only one subsequence then this is exactly 
Lemma 15. Suppose the proposition is true for any strip of n - 1 subsequences. Let 
Y be a strip of n subsequences. Let o be the label on ext(Y) and let v be the label on 
base(Y). The edge e which is shared by 2” - Y, and r,, is labeled by a single letter since 
the two regions which contain e in their boundary are both labeled by different 
relators. 

If we delete Y, from the diagram M, then Y - Y, is a strip. Let M’ be the diagram 
with r, deleted and let Y’ be the corresponding strip. Let o’ be the label on 
ext(Y, M’) and let v’ be the label on base(Y’, M’). Then by induction we have that 

lw’l 2 Iv’1 + 2 and llu’ll 2 llv’/I + 2. 

Similarly, we can delete Y - Y, for the diagram to form a diagram A4” with a strip Y” 
corresponding to the subsequence Y,,. Let 0” be the label on ext(Y’, M”) and let v” be 
the label on base(Y’, M”). Again we have that 

lw”l 2 Iv”1 + 2 and llo”ll 2 llv”II + 2. 

Now we use the fact that the edge e is labeled by a single letter to get 

(w(=~o’l+lo”l-2~(lv’~+2)+(~v”l+2)-2=lv~+2 and 

llwll 2 110’11 + llo”ll - 2 2 (llv’ll + 2) + ((Iv”11 + 2) - 2 2 llvll + 2. 

This proves the proposition. 0 
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Each of the subsequences, defined in the proof above, share exactly one edge with 
the preceding and following subsequence. These shared edges must be labeled by 
a single letter. Using this fact it is easy to prove the following corollary. 

Corollary 18. Suppose that H = (Xl&?) is an Artin group of large type, and M is 
a C(4 jT(4) reduced %diagram. Suppose that I” is a strip of M. Let I”i, for 1 I i I n, be 
the subsequences of the strip as defined in the proof of Proposition 17. Then for 
2 I i I n - 1, ext(Yi) is labeled by at least two syllables and, ext(YI) and ext(Y,,) are 
each labeled by at least three syllables. 

The last lemma in this section gives an important link between syllable length and 
word length. 

Lemma 19 (Appel and Schupp [2]). Suppose o E &$ is equal to the identity in Hij and 
0 =01w2. 

(1) II41 2 2mij. 

(2) If 11~11 I mij then 1~1 I 1~21. 

(3) If ll~ll I mij then 1011 < 1~~21. 

5. Thin equality diagrams and fellow travelers 

An equality diagram for two words, w and v, equal in the group G = (%I%?), is an 
W-diagram labeled by the word WV- ‘. We can think of o(t) and v(t) as paths along the 
boundary of the equality diagram. The l-complex of an g-diagram will not neces- 
sarily embed into the Cayley graph of the group. But it is clear that if there is a path 
between the points w(t’) and v(t’) of length k in the s-diagram, then d(o(t’), v(t’)) I k 
in the Cayley graph. So to determine whether paths are k-fellow travelers in the 
Cayley graph, we can concentrate on whether there is an equality B-diagrams in 
which the paths are k-fellow travellers. 

Let M be an equality diagram for the words o and v. Let p. and pf be the points of 
8M where the words begin and end, respectively. The diagram M is said to be basic 
thin if M is either a single region or M satisfies the following two properties: 

(1) There are two distinguished regions, Do and D,. These are the only simple 
boundary regions of M. For each of these regions the interior degree is one. Further- 
more p. E openext(D,) and ps E openext(D,). 

(2) The remaining regions of M are all non-simple boundary regions. For any one 
of these regions, D, the interior degree is two, and aDno and aDnv are each 
non-empty, consecutive portions of dM. Notice however that aDno or aDnv may be 
only a single vertex. 
The diagram will look like the one in Fig. 2. A bridge in an equality diagram is 
a portion of the boundary which does not lie on the boundary of any region and is 
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PO 

Fig. 2. Basic thin equality diagram. 

V w 

Fig. 3. Thin equality diagram. 

labeled by a portion of both words. A bridge appears in the diagram as a long edge. 
For any bridge, let p. be the beginning point and p/ be the end point. 

A thin equality diagram (Fig. 3) is a finite connected string of bridges and basic thin 
equality diagrams. These are strung together by connecting the point pf of one to the 
point p. of the next. 

Suppose two words, w and v, in d* are equal in the group G and have a thin 
equality W-diagram, M. Furthermore, assume that 99 is finite and the maximum 
length of the relators is 2k. Let p be a point of aMno. If the point p is on a bridge, then 
p is a point of aMny. If the point p is on the boundary of a region, D, then p is within 
k of aDnv. Thus, we have the following lemma. 

Lemma 20. Suppose G = (%[%?) is a finitely related group with 2k the maximum 
length of a relator. Let w and v be words in .x2* which are equal in the group. If there 
exists a thin equality diagram for the words o and v then the two paths o and v in the 
Cayley graph L”(G) lie in a k-Hausdorflneighborhood of each other. Furthermore, ifthe 
two words co and v are geodesic paths in the Cayley graph then by Proposition 1, they are 
2k-fellow travelers. 
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s6 

s5 

s3 84 812 

r3 r5 f7 

Fig. 4. An example of the labeling scheme. 

A more general connection between thin equality diagrams and fellow travelers is 
shown in the next lemma. 

Lemma 21. Suppose G = (%lB) is a finitely related group with 2k the maximum 
length of a relator. Let o and v be words in &* which are equal in the group. Suppose 
that there exist a thin equality 9%diagram for w and v such that all edges of M, which are 
on the boundary of a region, have maximum length k. Then at least one of thefollowing is 
true: 

(1) w and v are 2k-fellow travelers, 
(2) there exist a path y such that co and y are 2k-fellow travelers, 7 = u5 and 1 y 1 -c 10.~1, 

(3) there exist a path y such that v and y are 2k-fellow travelers, jj = V and IyI < Iv]. 

Proof (sketch). Let M be a thin equality W-diagram for the words w and v. The 
diagram M looks like the diagram in Fig. 3 above. 

Label the vertices along the path o with the sequence (so, sl, . . . , s,}. The vertices 
are labeled in the order in which they appear along CD. The beginning point p,, is 
labeled so. A vertex v is given multiple labels if d(v) 2 3, in the following manner. If the 
preceding vertex has its largest label sh and d(v) = 2 + j then label the vertex v with 

sh+l,sh+Z, ... ,sh+j- Label the vertices along v in the same manner with the sequence 

1 10, rl, . . . , m}. An example of this labeling scheme is given in Fig. 4. 
Let l(o, i) be the length of the word w up to the vertex si, and similarly let l(v, i) be 

the length of the word v up to the vertex ri. If Il(o, i) - l(v, i)l I k for all i, then it is 
easy to show that the two paths o and v are 2k-fellow travelers. Suppose, on the other 
hand, that for some value of i, Il(w, i) - l(v, i)I > k. Let h be the first index for which 
this happens. Assume that l(w, h) is larger than l(v, h). Let y be the label on the path 
that starts at p. and runs along v up to the vertex rh, then passes over the edge between 
r,, and sh and then continues along the remaining portion of o to p/. The path 
y satisfies conclusion (2) of the lemma. If on the other hand, l(v, h) is larger than l(w, h), 
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then in a similar manner we can find a path which satisfies conclusion (3) of the 
lemma. 0 

6. C(4kT(4) equality diagram for stripless words 

Let G be a finitely generated group with presentation (%I%?). In this section we 
examine a-diagrams with the following properties: 

(1) M is an equality diagram for the two words, a and /?; 
(2) M satisfies C(4)-T(4); and 
(3) no subword of a or j? labels the entire exterior of a spike or strip. 

Throughout this section we will assume that M satisfies these properties. 
Let p. and pf be the point of 8M where the two words begin and end, respectively. If 

the diagram begins or ends with a bridge, remove the bridge or bridges and consider 
the remaining diagram. The remaining diagram will still satisfy the properties stated 
above. We will frequently abuse the notation and refer to edge paths in W-diagrams by 
their labeling word. It will be clear from context when a refers to a boundary portion 
and when ct refers to a word. 

Lemma 22. The points p. and ps are not at vertices of M. 

Proof. If M is a single region then M has no vertices and the result is trivial. Suppose 
that M contains more than one region, and that p. is at a vertex of M. If M contains 
two or more singleton strips then at least one of a and /? will label the exterior of one of 
the singleton strips, contradicting the hypothesis. If M contains only one singleton 
strip, D, then pf E openext(D). Otherwise, a or /I will label the exterior of the singleton 
strip. By Corollary 11, there are two other strips of M. Since p. is at a vertex of M, one 
of these strips will have its entire exterior label in one of the words a or p. This is again 
a contradiction. 

The last possible case is that M has no singleton strips. By Corollary 11, M contains 
four strips. But again, because p. is a vertex of M one of the strips will lie so as to have 
its entire exterior label within one of the two words M: or /3. This is a contradiction. 
Thus PO is not a vertex of M. 

A similar argument shows that p/ must not be a vertex of M. 0 

There are two distinguished regions of the diagram M. These regions include p. or 
p/ in their exterior and are denoted by Do and D,, respectively. 

Lemma 23. For all boundary regions D of M, both ext(D)no: and ext(D)nfi are 
consecutive portions of aM. 

Proof. Suppose that, for some region D of M the boundary portion ext(D)ntx is not 
a consecutive portion of cYM. Then there is a subdiagram K of M such that 
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base(K) c aD and ext(K) c tx. Consider the subdiagram KuD of M. By Corollary 11, 
KuD has at least two disjoint strips. The region D can only be in one of these strips. 
Thus, the other strip has its entire boundary in CI. But this contradicts the assumption 
that a does not label the exterior of any strips. 0 

Lemma 23 shows that any non-simple boundary region of M touches both words. 
The non-simple boundary regions therefore make up the thin part of the diagram. We 
can now begin to get a picture of the diagram M. It will contain a number of thick 
subdiagrams (these contain only simple boundary regions) strung together by non- 
simple boundary regions and bridges. We need to examine the thick subdiagrams of 
M. The first thick subdiagram is denoted by Mth. 

The subdiagram Mth can be found in the following manner. Start with the diagram 
M. If the region DO is a singleton strip remove it from the diagram. Call the resulting 
diagram MI. There are two possible situations depending on whether base(D,,, M) 
is an edge or a vertex. If base(D,-,, M) is an edge, then there is a distinguished region, 
D1, in MI which includes in its exterior the old base(D,, M). On the other hand, 
if base(Do, M) is a single vertex, then label the associated point of MI, with po. 
If p. lies at the end of a bridge remove the bridge from MI. If p. lies on a region 
then just as in Lemma 22 we can show that it does not lie at a vertex of MI. 
Therefore, again there is a distinguished region, D1, with p. in openext(D1, MI). 
In both of the cases we end up with a new diagram MI with a new distinguished 
region D1. Now continue this process. If the region D1 is a singleton strip of 
MI remove it to get a new diagram Mz with a distinguished region Dz. If the 
original diagram M was thin then this process will end with a diagram M, which 
is a single region. If M was not thin then we must eventually find a diagram 
M, in which the region D, is not a singleton strip. Denote this region F. Now 
follow the boundary words a and p further on the diagram M, until the first 
boundary region after F which touches both words. Call this region L. Finally, remove 
from M, all the regions after the region L. This is now the diagram Mth, the first thick 
section of M. 

Now the goal is to examine M,,,. We pay special attention to the boundary regions 
and how they fit together. To begin with, note a few obvious properties which follow 
from the construction of Mth. 

Lemma 24. Let u’ and j?’ be the subwords of cI and fl, respectively, which label portions 
of aMth. Let E be the label on the portion of aM,,, which was the base of the last removed 
singleton strip. Let 6 be the label on the ext(L, Mth). 

(1) The word E may label as little as a vertex or as much as a single edge. 
(2) The only regions in Mth which touch both rz’ and /I’ are F and L. 
(3) All the boundary regions of Mth are simple. 
(4) There are no singleton strips or spikes on Mth. 
(5) There are no cut vertices in Mth. 
(6) The diagram Mth has more than one region. 



D. Peifer/Joumal of Pure and Applied Algebra 110 (1996) 15-56 33 

Recall that A4 is C(4kT(4); therefore Mth is also C(4)--T(4). The C(4kT(4) hypoth- 
esis implies that the degree of interior regions, and the degree of interior vertices must 
be at least four. The next lemma states that the added hypothesis that tl and b do not 
label strips forces these degrees to be exactly four. 

Lemma 25. The diagram Mtb satisfies the following properties: 
(1) x*(3 - i(D)) = 4. 
(2) All interior regions have degree four. 
(3) All interior vertices have degree four. 
(4) All boundary regions have interior degree less than or equal to four. 

Proof. This follows from Lyndon’s curvature theorem. Notice that Mth satisfies all 
the hypothesis of Corollary 10. Therefore, the diagram Mth satisfies the following 
equality: 

4 = C ‘(3 - i(D)) + Co (4 - d(D)) + 1 o (4 - d(v)). 

Because Mth is C(4kT(4), all interior vertices and all interior regions have degree at 
least four. Thus, co (4 - d(D)) I 0 and 1’ (4 - d(v)) I 0. If either of these is negative 
then I’(3 - i(D)) > 4. But for this sum to be greater than four, Mth must contain at 
least five strips. There is no way for Mth to contain five strips without the entire 
exterior of at least one strip being contained in one of CI’ of j?‘. This is a contradiction. 
Therefore c ’ (4 - d(D)) = 0 and 1 o (4 - d(v)) = 0. This proves parts (l)-(3). 

Now suppose that there is a boundary region D1 with i(Dt) 2 5. Since 
x*(3 - i(D)) 2 4 we have 

.FD* (3 - i(D)) 2 6. 
1 

This again forces five strips and thus a strip with the entire exterior within CI’ or /I’. So 
again this is a contradiction. This proves part (4). 0 

Lemma 26. The regions F and L of Mth satisfy, i (F) = i(L) = 2, F and L both begin 
compound strips in the clockwise and the counterclockwise directions, and there are no 
other strips in Mth. 

Proof. By Corollary 11, Mth contains four or more strips. But Mth cannot contain five 
strips without containing a strip whose entire exterior is within CI’ or p. Thus, Mth has 
exactly four compound strips. The only way that four strips can fit into Mth without 
one of the words CL’ and p labeling the exterior of one of them is if F and L both begin 
compound strips in both directions. 0 

Lemma 27. One of ext(F, M)na’ or ext(F, M)np is more than a single vertex. 
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Proof. In the diagram Mth, i(F) = 2. Recall if any region which touched F was 
removed in the construction of Mth the removed region was a singleton strip. Thus, 
that region could have only covered a piece of ext(F, Mth). Since the original diagram 
M satisfied C(4), and i(F) = 2, ext(F, Mth) is more than one piece. q 

To get a better picture of the diagram Mth we will examine more closely the 
boundary regions. Define v= {B,, B2, . . . ,I&} to be the sequence of boundary 
regions of Mth, encountered consecutively in the counterclockwise direction, starting 
just after F and ending just before L. Similarly, define A = {A,, AZ, . . . , A,,_} to be the 
sequence of boundary regions of Mth, encountered consecutively in the clockwise 
direction, starting just after F and ending just before L. Notice that the set of all 
boundary regions of Mth is equal to the disjoint union of F, L, vand A. 

In the sense of Lyndon’s curvature theorem, each boundary region adds curvature 
to the diagram. Using the convention that the total curvature of the diagram is four, 
define the curvature of a boundary region to be 

r(D) = (3 - i(D)). 

In this same sense a sequence of consecutively encountered boundary regions (reading 
in the clockwise or counterclockwise direction) adds curvature to the diagram. If Y is 
a sequence of boundary regions let r(T) denote IDE r (3 - i(D)). 

Lemma 28. Both V and A have curvature one, i.e. z(V) = 1 and z(A) = 1. Furthermore, 
if T is an initial subsequence of V or A, then z(T) = 0 or 1. 

Proof. Let Y be an initial subsequence of V or A. Suppose that z( 2’) > 1. Then Y must 
contain a region D1 with z(D1) = 1 followed by a sequence (possibly empty) of regions 
with curvature zero and then a region DZ with r(DZ) = 1. But the regions D1 through 
D2 form a strip whose exterior is entirely within either tx’ or p. This is a contradiction. 
Thus r(T) I 1. 

By Lemma 25, I’(3 - i(D)) = 4. Thus, we have 

z(F) + z(L) + z(V) + z(A) = 4. 

By Lemma 26, z(F) = z(L) = 1. Thus, z(V) + z(A) = 2. Therefore, since neither quan- 
tity is greater than one, z(V) = r(A) = 1. 

Now suppose that z(T) < 0. Let Y’ be the sequence of boundary regions obtained 
by truncating Y off the front of V or A, whichever is appropriate. Since r(Y) < 0, we 
must have r(Y) > 2. But as in the first paragraph of this proof Y must contain a strip, 
which is a contradiction. Therefore, r(T) 2 0. 0 

The last two lemmas state that if side regions are ignored, V and A begin and end 
with corners. Furthermore, within each of these sequences corners and inner corners 
are encountered alternately. Fig. 5 is a sketch of a possible diagram Mth. 
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Fig. 5. The boundary regions of Mth. 

7. Refuting the strip words 

In Sections 3-6 we examined W-diagrams. In particular, Section 5 contains the 
definition of thin equality diagrams and Section 6 contains an analysis of the structure 
of non-thin C(4kT(4) equality diagrams. We are now ready to prove that if H is an 
Artin group of extra-large type then the language L(H) is regular. The method relies 
on a lemma of Davis and Shapiro. We supply a proof, due to Davis and Shapiro. Let 

L(G) denote the complement to the language L(G) in d*. 

Lemma 29. Let G be a group given by a presentation (%lB?), with the generating set 
S’Jinite. Let ~4 be the set of semigroup generators and let < be a regular ordering of the 
elements of &*. The language 

L(G) = (vEA”~ v is < minimal for V} 

is regular if there is a constant number k, such that for every o E L(G) there is a k-fellow 
traveler v, with v<w~d* and V = 0~ G. 

Proof. To begin with, we will show that the language LN = {(v, w) 1 V = 0 and v and 
o are k-fellow travelers} is regular. We do this by building a finite state automaton, 
MN, that accepts this language. Let B(N) be the set of all elements of G that are 
a distance of N, or less, from the identity in the Cayley graph of G. The states of MN 
consist of a fail state together with one state for each element of B(N). The start state 
is 1. Suppose the automaton is in state g EB(N) and is reading the pair of letters 

1 (aI, az) E ~2 x &. (The padding element should be taken to be 1.) If a; g& is in B(N), 

then the transition function changes the machine to state a; ’ g&. If however, a; ’ g& 
is not in B(N), then the transition function changes the machine to the fail state. Once 
the machine is in the fail state it remains there. The only accept state is 1. It is easy to 
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Fig. 6. k-parallel paths. 

check that the MN accepts a pair (v, o) if and only if (v, W)E LN. Therefore, LN is 
regular. 

By hypothesis L, = {(v, w) 1 v<w} in regular. Let p2 denote the projection on the 
second factor. It is a standard result that the projection of a regular language is 
regular, see either [6] or [lo]. Finally, we have 

L(G) = ~2@4-&). 

Therefore, the language L(G) is regular. 0 

We say that the word v k-refutes the word w, relative to the ordering <, if v 
and w satisfy the following properties: V = 0 in G, v<w, and v and o are k-fellow 
travelers. 

Suppose that H is an Artin group of extra-large type for which the largest finite 

mij value is m. In Sections 7-10, we show that all words w E L(H) are 2m-refuted. We 
begin this section by focusing on some special cases where the word w contains some 
simple types of subwords. In Section 8, this is extended to the case where o contains 
two generator subwords that are not geodesics in their respective two generator group 
Hij. In Section 9, this is again extended to words which contain any non-geodesic 
subword. Finally, in Section 10 we prove the main result, Theorem A. 

One thing that must be done in order to show that a word 2m-refutes another is to 
prove that the words are 2m-fellow travelers. In the rest of this paper we will 
frequently show that two words have some very specific properties and will then claim 
that they are 2m-fellow travelers. To this end we define k-parallel words to be words 
with these specific properties. 

Suppose that w and v are two words in &*, with subwords, a, E, E’, 6,6’, y, y’, and c, 
such that 

(1) ii, = V. 
(2) o = aeyd[ and v = ae’y’b’[. 
(3) I E 1, IE’J, 16 1, 16’1 are all less then or equal to k. 
(4) y and y’ have the same length and are k-fellow travelers. 

Then we say that the words (or paths) are k-parallel. 
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Two paths that are k-parallel are in fact 2k-fellow travelers. This is easy to show 
using the fact that 11~1 - \&‘I1 and 1181 - 16’11 are both less than or equal to k. We state 
this fact as a lemma for future reference. 

Lemma 30. If two words o and v are k-parallel then they are 2k-fellow travelers. 

Recall that a strip word is a word which can label the exterior of a strip in 
a C(4kT(4) W-diagram. We prove that for any two generator Artin group or Artin 
group of large type, all words in d* which have strip subwords are 2mrefuted, where 
m = max(mijI mij # co }. Start by eliminating some special cases. In Lemma 31, 
a Dehn word refers to a subword of a relator that has length more than half the length 
of the relator. 

Lemma 31. Suppose that H is any Artin group. Let m = max{mijImij # co >. If 
o E SXP contains a subword which is either an inverse pair, a Dehn word or a far-corner 
then there exist a word v in d* which 2m-refutes w. 

Proof (sketch). We will do the case when w contains a far-corner subword. The other 
cases are similar. Replacing the half relator in the far-corner by the corresponding half 
relator will produce a word v of equal length that represents the same group element. 
There is a one region equality diagram for these two words. It starts with a bridge up 
to the point of the far-corner. At this point there is one region with the high and the 
low words passing around either side. Then the paths meet again and continue along 
a bridge until the end of the diagram. Because the half relators have length less than or 
equal to m, these paths are clearly m-fellow travelers. The only thing left to show is 
that v<w, but this follows directly from Corollary 6. 0 

Proposition 32. Suppose that H is either a two generator Artin group or an Artin group 
of large type. Let m = max(mij(mij # a3 >. lf WE d* contains a strip word then there 
exist a word VE&‘* which 2m-refutes co. 

Proof. Let w be a word which contains a strip word. By Lemma 31 we can assume 
that o does not contain any inverse pairs, Dehn words or far-corners. Notice that 
a singleton strip word is a Dehn word. 

Case I: Assume that o contains a strip word y E a$, that is associated with a strip 
made up of regions all labeled by the same relator. Let y’ E &i”j be the word that would 
label the base of the strip. Let v be the word obtained by replacing the occurrence of 
y in o with the word y’. Clearly, W = V and by Lemma 15, Iv( c 101 so that v<o. Thus, 
we need only to show that o and v are 2m-fellow travelers. 

Consider the equality diagram for v and w in Fig. 7. The regions for this diagram 
come from the regions of the strip associated with y. 

By finding the positions of the poles for each region we will be able to show that 
Lemma 30 applies. First examine the last region, D,. Since we have assumed that the 
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TO r2 Tn-I T, 

Fig. 7. The equality diagram for w and v. 

Fig. 8. The poles in the equality diagram for v and w. 

strip is not a singleton strip, we know that there is a region D,_ I before D,. The word 
o labels a portion of ext(D,-l) and the vertex s,_~ has degree three. Therefore, 
D, cannot have both poles in ext(D,)no, this would force o to contain a Dehn or 
far-corner subword. The two other edges of D, are labeled by pieces. Pieces never 
contain poles. So one of the poles must be at the vertex r,_ 1. The other must be in 
ext(l),)no but not at either boundary vertex. 

The region D, _ 1 must have a pole at vertex s, _ 1, by Lemma 12. If D, _ 1 is not the 
first region of the strip then the other pole of D,_ 1 cannot also lie on ext(D,- l)no 
because this would imply that o contains a Dehn or far-corner subword. Therefore, 
since all the other edges of D, _ 1 are labeled by pieces, the other pole for D, _ 1 is at the 
vertex Y,_~. Continuing this same line of argument we can show that the poles for 
each region are as pictured in Fig. 8. 

Because of the positioning of the poles, for 2 I j I n, the label on i?Dp~ has 
exactly the same length as the label on aDj_ 1 nv. In fact, if mij is even then the labels, 
read moving to the right, are identical. If mij is odd, then the labels are related by the 
correspondence xi c, Xj, X; 1 t, x,: ‘. In Fig. 8 the dark edges represent the portions of 
the two paths that match in the sense just described. 

By examining Fig. 8 we can see that the two paths v and w are m-parallel. The dark 
edges in the diagram in Fig. 8 correspond to the subwords y and y’ of the definition of 
k-parallel. Therefore, the two paths w and v, in the Cayley graph, are 2m-fellow 
travelers. Thus, v 2m-refutes o. 

Case 2: Now we consider the case that the strip word is not a two generator strip 
word. Recall from the proof of Proposition 17 that the strip can be divided into a set of 
subsequences. Let Y be the last of these subsequences, with regions labeled by the 
relator rij. Let 1 be the label on drnw and let A’ be the label on the remaining portion 
of ar. Let v be the word obtained by replacing the occurrence of 1 in the word w by 1’. 
Clearly 0 = V. 
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Fig. 9. The subsequence Y. 

We will first examine the case when Y is only one region, pictured in Fig. 9. The 
edge el must be labeled by a single letter. This is because this edge is shared by two 
regions which are labeled by different relators. The edge ez is labeled by a piece, so its 
label must have length less than mij. Therefore, the edge e3 is either labeled by a Dehn 
word or a half relator. We have assumed that w contains no Dehn words, so e3 is 
labeled by a half relator. But, by Corollary 18 both syllables of the preceding 
subsequence of the strip will appear on the exterior of the strip. Thus, this is the 
configuration of a type II far-corner. So by Lemma 31, r cannot be a single region. 

Fig. 9 also depicts Y with more than one region. The poles must lie as they are 
placed in the figure. This can be shown by a similar argument as that used in Case 1. 
Now again, by Lemma 30, o and v are 2m-fellow travelers. All that is left to do is show 
that v<w. 

The length of the edge el must be 1 since it is labeled by a single generator (Note el 
is shared by regions on different relators.) Therefore, the length of e2 is mij - 1. Let e3 
represent the half edge from the pole to the vertex shared with edge e4. 

Suppose that le31 > 1, then le41 < mij - 1. Thus, we have that 

IV1 = I + lell + le,l I1 + T&j = (F&j - 1) + 1 + 1 < lezl + 1 + le31 = 101. 

Since Iv1 < (w( it is clear that viw. 
Suppose however that I e3 I = 1 and I e41 = mij - 1, then IO] = I VI. In this case we 

need to show that g(v) < g(o). Let Y’ be the subsequence of the strip that immedi- 
ately precedes Y. 

By Corollary 18 both generators appear in the label along ext(Y). Since both 
generators of the relator labeling Y’ appear in o we can see that o contains an 
excessive word. By Corollary 6, a(v)<g(w). This completes the proof. 0 

8. Refuting two generator non-geodesics 

Consider the Artin group H with language L(H) c d*. For any two distinct 
generators Xi and Xj there is an Artin group Hij with language L(Hij) c d$. A word 
cc) E ._&* is called a two generator geodesic if it is an element of one of the languages &+j, 
and is a geodesic in the Cayley graph of Hij. The set of words of particular interest in 
this section are the two generator non-geodesic words. This is the set of all two 
generator words, on any two generators from 3, that are not two generator geodesics. 
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Proposition 33. Suppose that H is an Artin group of large type, or a two generator Artin 
group, with m = max{mijImij # 00 }. Then any word in &* containing a two generator 
non-geodesic subword is 2m-refuted. 

Suppose wed* contains a two generator non-geodesic subword. To prove Pro- 
position 33 we can assume that o does not contain any inverse pairs, Dehn words, 
far-corners, or strip words. Proposition 32 states that any word containing one of 
these as a subwords is already known to be 2m-refuted. Pick w’ to have minimal length 
among all two-generator non-geodesic subwords of o. Suppose that o’ is in &$. Note 
that the value mij for the group Hij must be finite. If mij were infinite then Htj would be 
the free group on two generators and all non-geodesics will contain an inverse pair, 
but we have assumed that o, and thus that w’ does not contain inverse pairs. Notice 
also that all proper subwords of o’ are two generator geodesics. Let v’ be a word in 
L(Hij) such that V’ = W’. The word v’ is a geodesic word; therefore, Iv’1 < 10’1. Let v be 
the word obtained by replacing the occurrence of o’ in o with the word v’. 

Let M be an equality Wij-diagram for the word v’ and w’. If the diagram M is a thin 
equality diagram then Proposition 33 follows directly from Proposition 21. Therefore, 
we need only consider the case that when M is not thin. The diagram M is a C(4)-T(4) 
because the two generator Artin group Hij satisfies C(4kT(4). Notice also, that the words 
o’ and v’ do not label the exterior of a spike or a strip in dM because we have assumed 
o contains no inverse pairs or strip words. Therefore, M is a diagram like the diagrams 
discussed in Section 6. As in Section 6, M contains a first thick subdiagram Mth. The 
central objective now is to locate the poles for each of the boundary regions of Mm. With 
this information we will be able to locate a path through Mth whose label 2m-refutes w. 

In order to carefully examine Mth we introduce the following terminology. Let 0” 
and v” be the labels on w’n8Mth and v’naMth, respectively. Let F and L be the first 
andlastregionsofMth.LetA={W1, Wz, . . ..W.}andV={I’i,VZ, . . ..v..}bethe 
sequences of boundary regions along the top and bottom of the subdiagram M,,,. 
Typically, Mth will look like the diagram in Fig. 5. 

The next three lemmas describe the positioning of the poles for the boundary 
regions of Mth. The first is a short technical lemma that will be cited several times in 
the rest of this paper. 

Lemma 34. Let Y= {Dklk = 1, . . . ,n> be a consecutive subsequence from A or V. 
Suppose that: Y is at least two regions long; the last region of Y, D,, is a corner; the rest 
of the regions are sides; and the ext(Y) is entirely within co” or v”. Then thefollowing are 
true. 

(1) openext(D,) contains a pole. 
(2) The other pole of D, is at the interior vertex. 
(3) For each 1 I k < n, ext(D,) contains exactly one pole which is located at the 

exterior vertex shared by the regions Dk and Dt+ 1. 
(4) For each 2 5 k < n the base(D,) contains exactly one pole which is located at the 

interior vertex shared by the regions Dk_l and Dk. 



D. PeijerjJournal of Pure and Applied Algebra 110 (1996) 15-56 41 

Fig. 10. Poles of a corner and preceding side regions. 

Proof. Without loss of generality, assume that Y is a subsequence of A and ext(Y) is 
contained in w”. First consider the corner region, D,. Notice that the word 0” begins 
before the first vertex of ext(QJ_ This vertex has degree three. Therefore, the last letter 
of w” (or v”) before the word labeling ext(D,) is the same as the first letter labeling 
ext(&). If there is no pole at the interior vertex of D, then both poles lie in ext(Q,). But 
this would imply that the word W” contains a Dehn or far-corner subword contrary to 
our assumption. Therefore, there is a pole at the interior vertex of D,. The other pole 
of D, must be in openext(D,) because the interior edges of D, are labeled by pieces. 

The vertex shared by D, _ 1 and D, must be a pole for the region D, _ 1 by Lemma 12. 
The proof is done if Y is only two regions long. However, if Y is longer, then we can 
determine the position of the poles for the rest of the side regions as follows. Suppose 
that there is another side region D,_ z before D, _ 1 in 2’Y If the other pole of D, _ 1 is in 
ext(D,_,) then w” (or v”) contains a Dehn or far-corner subword. Therefore, the 
second pole of D, _ 1 is at one of the two interior vertices. Since the interior edges are 
labeled by pieces the second pole must be at the interior vertex shared by Dne2 and 
D,_ 1. By continuing in this fashion we can work through all the side regions and 
prove the lemma. 0 

In Fig. 5, the two regions marked by C are inner corners with exterior edges. In 
Lemma 35 it will be shown that this is not possible, all inner corners have only a vertex 
on aM,,. Thus, inner corners have exactly four edges and four vertices. More 
importantly, Lemma 35 states where the poles for each boundary region lie. If a pole 
appears in the open exterior of a region we add a vertex at that point. Using this 
convention, vertices will be added to all corner regions (except F and L) and only to 
corner regions, so that all regions, except F and L, will have exactly four vertices and 
four edges. We assign the directions north, south, east, and west to the four vertices of 
each boundary region as would be done on a standard map. It is easy to verify that 
this is well defined. 

Lemma 35. Every region of A and V has degree four and the poles for each region lie at 
the north and south vertices. 
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Fig. 11. WI is a corner. Fig. 12. WI is a side. 

Proof. One of ext(F)no” or ext(F)nv” must include an edge. We will assume that 
ext(F) has an edge in w”. The other case is treated in the same manner. Let A = { Wi} 
and V = {Vi}. 

Suppose that Wi is a corner as in Fig. 11. Then ext( W, ) contains at least one pole. 
If the boundary vertex shared by F and W1 is a pole then both poles of W1 are on 
ext(Wi), since interior edges are labeled by pieces. Similarly, if the vertex shared by 
WI and W, is a pole for WI then again both poles are on ext( WI). But W 1 cannot have 
both poles on ext( WI), since this would imply 0” contains a far-corner or Dehn word 
(recall that we are assuming that ext(F) contains an edge in 0”). Therefore, one of the 
poles for the region WI is at the vertex in openbase( The other pole must lie in 
opened because interior edges are labeled by pieces. By convention a vertex is 
added at this pole. Therefore, the region W, has exactly four edges and has 
north-south poles. 

Suppose that WI is a side region as in Fig. 12. Recall that at(F) contains an edge 
in 0”. Therefore, just as in Lemma 34, it can be shown that the poles are north 
and south. Because WI cannot be a inner corner, this proves the proposition for the 
region WI. 

Now an induction proof will show that the remaining boundary regions also satisfy 
the proposition. First, consider the regions in A. Suppose the first n regions of A satisfy 
the lemma. The region W, + 1 is either a corner, side, or inner corner region. Look at 
each case separately. 

If w,,, . . is a side then either, W,,, 1 follows a corner or it follows an inner corner. 
Consider the case that W,,, 1 follows a corner, as in Fig. 13. The boundary vertex 
shared by W,, and W,, 1 is not a pole for W,, by induction. Therefore, this vertex is 
apolefor Wn+l, by Lemma 12. Notice that ext( W,,, 1) cannot contain another pole or 
else W” would contain a far-corner or Dehn word. The other pole must therefore be at 
the south vertex. If the region W,,, 1 follows an inner corner as shown in Fig. 14, then 
the poles are north and south, by Lemma 34. 

Now suppose that W,,, l is a corner. The boundary vertex shared by W,, and W,, + 1 is 
not a pole for W,, 1 by Lemma 12. If ext( W,, 1) contains two poles, then o contains 
a Dehn word. Thus, one of the poles is at the interior vertex shared by regions W, and 
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Fig. 13. W,, 1 follows a corner. Fig. 14. W,,, 1 follows an inner corner. 

W a+1* Now the other pole must be within openext( W,, + 1). Therefore, W,, + 1 satisfies 
the conclusion of the lemma. 

Suppose W,,, 1 is an inner corner. Suppose ext( W,,, 1) contains an edge. Then the 
vertex shared by W, and W, + 1 is a pole for W,, 1, by induction and Lemma 12. The 
edge in ext( W, + 1) cannot contain another pole or w” would contain a far-corner or 
Dehn subword. Thus, the vertex shared by W, + 1 and W, + 2 is not a pole for W, + 1. But 
now the same proof as in Lemma 34 shows that the next corner region of A would 
have both poles on its exterior. This forces a far-corner or Dehn subword in CO, which 
is a contradiction. Therefore, ext( W,,, 1) does not contain an edge. 

Thus, W,, + 1 has four edges which are all interior edges. Because of the positioning of 
the poles in the region W,, Lemma 13 implies that the poles for W,,, 1 are north and 
south. Thus, all the regions in A satisfy the lemma. 

In order to prove the lemma for the regions in V, first consider the region 1/I. The 
vertex shared by the regions WI, F and I/, must be an interior vertex or else the 
diagram would contain a singleton strip. By Lemma 14, this vertex is a pole for 
I/, since it is a pole for WI. If V, is a corner, the fact that interior edges are labeled by 
pieces shows that there is a pole within opened( So in this case V1 satisfies the 
lemma. If I/, is a side then Lemma 34 shows that the other pole is at the boundary 
vertex shared by 1/1 and I/,. And again 1/i satisfies the lemma. 

The rest of the regions in V satisfy the lemma by a similar induction proof used for 
the regions of A. i-~ 

Lemma 36. The poles of F and L are north and south. 

Proof. First consider the region F, pictured in Fig. 15. There may be a portion of 
ext(F) which is not labeled by either of the words w” and v”. This portion is denoted 
by E. If there is such a portion it will have come from the base of a singleton strip. 
Therefore, the label on E is a piece. Either ext(F)nw” or ext(F)nv” contains an edge. 
We consider the case that ext(F)no” contains an edge; the proof in the other case 
is very similar. Because W” is freely reduced, Lemma 12 implies there is a pole at 
vertex 21a. 
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Fig. 15. The region F. Fig. 16. The region L. 

If ext(F)nv” also contains an edge then again, by Lemma 12, the second pole must 
lie at vertex ul. The only case left is when ext(F)nv” does not contain an edge. If the 
other pole is in ext(F)no” then it must be at the end of E. Otherwise the word 0” 
would contain a Dehn word. If however the pole is at the end of a, so that ext(F)nd’ 

is labeled by a half relator, then the label starting at E along m” up to and including the 
exterior of the first corner of V, is a strip word. It may not appear as the boundary of 
a strip in this diagram, but notice that the only portion of 8F not included in this word 
is one piece. However, we have assumed that w” does not contain strip words. 
Therefore, the other pole must be at vertex ul, as claimed. 

Now examine the region L, pictured in Fig. 16. We want to show that the two poles 
are at the vertices u2 and us. The argument will depend on i(L, M), the number of 
interior edges of L relative to the diagram M. First, note that the two edges e, and 
e2 will be interior edges in M. Suppose that i(L, M) = 2 or 3. Then ext(L)nw” 

includes an edge or ext(L)nv” includes an edge. The argument in these two cases is 
very similar to the proof that was given above for the region F. 

Suppose that i(L, M) 2 4. In this case the region L must start a second thick 
subdiagram, M &, of the diagram M. The second thick subdiagram must look very 
much like the first thick subdiagram. The lemmas in Section 6 apply to this subdia- 
gram also. By Lemma 26, i(L, M) = 4 since in the second thick subdiagram 
i(L, Mfh) = 2. If ext(L)no’ includes an edge, say i then there must be poles at both 
ends of ;1 by Lemmas 12 and 34. But this means that w’ contains a far-corner, 
a contradiction. Therefore, ext(L)nw’ is only a vertex. By similar methods ext(L)nv’ 
is only a vertex. Now it is clear that the poles must be at 2r2 and v3 since L cannot have 
a pole at u1 by Lemma 14. 0 

Fig. 17 is a sketch of a possible diagram M,,,. Notice that the positioning of 
the poles shows that the labels on the two heavy lined paths are of equal length 
as are the paths on the dotted lines. With this information we can now prove 
Proposition 33. 
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Fig. 17. The subdiagram Mth with poles shown. 

Fig. 18. The regions F and L. 

Proof of Proposition 33. If the diagram M is thin then by Lemma 21, there is a word 
that 2m-refutes w. Therefore, assume that M is not thin. There is a first thick 
subdiagram, Mth. Let y be the label on ext(A), and let y’ be the label on base(A). Let 
R be the word obtained by replacing the occurrence of y in w by y’. We will now show 
that il2m-refutes o. 

By the positioning of the poles (see Fig. 17), the paths along the heavy lines have 
equal length and the paths along the dotted lines have equal length. Furthermore, if 
we examine the portions of the diagram near F and L (pictured in Fig. 18), the poles 
show that 

IelI = le31, le2l = le4L le5l = l+l, and le6l = hl. 

Since v” is a geodesic, I e3 I + I e7 I 2 I e4 I + ) es I. Therefore, 

IelI + le51 2 le21 + le6l. 

This shows that Iy I 2 Ir’l. Notice also that this shows that the paths w and ,I are 
m-parallel. Thus, by Lemma 30 the words w and 1 are 2m-fellow travelers. Therefore, 
all that is needed is to show that ,I<o. 
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If 1 y 1 > 17’1 then it is clear that ;l<o. Suppose that lyl = Iy’l. First assume that 
ext(F)no” contains an edge. Let a be the letter of the word o that comes just before 
the occurrence of y. We will show that the word ay is an excessive word, with y and y’ 
the high and low words. Because there is a vertex of degree three between the letter 
a and the word y, the first letter of y must be a. By the construction of y’, 7 = 7’. We 
now need to show that the first two letters of y’ have different colors. 

If the first region of A, WI, is a side region of Mth then y’ partially labels two interior 
edges of that region. Because of the form of the relators the first two letters of y’ must 
have different colors. Suppose WI is a corner. Then y’ only passes over one of the 
interior edges of that region. Call this edge e. If e is labeled by a single letter then by the 
position of the poles, ext(W1) is labeled by at least half a relator. This implies that 
cc) contains a far-corner or Dehn word, which contradicts the hypothesis. Thus, e must 
be labeled by a piece that is at least two letters long. Therefore, the subword ay of w is 
an excessive word. By Corollary 6, we have that A<w. 

Now consider the case when ext(F)nv” contains an edge. Let cp be the word 
labeling ext(V) and let cp’ be the word labeling base(V). The word obtained from v’ by 
replacing the occurrence of cp by the word cp’ can be be shown to precede v’ in the 
ordering. This can be shown in the same manner as was done in the above two 
paragraphs. But this contradicts the choice of v’ EL(G). Therefore, ext(F)nv” must 
not contain an edge and ext(F)noY’ does contain an edge. This completes the 
proof. 0 

9. Refuting non-geodesics 

A word wed* is called a geodesic if it has minimal length among all words in 
zd* that represent the same group element. Equivalently, this means that the corres- 
ponding path in the Cayley graph is a geodesic. The goal in this section is to refute 
all non-geodesic words. The approach is similar to the approach used in Section 8 
to refute the two generator non-geodesics. The main result is the following 
proposition. 

Proposition 37. If H is an Artin group of extra-large type, with m = 
max{mij I mij # 00 }, then all words which are non-geodesics are 2m-refuted. 

To prove Proposition 37 assume that o is a non-geodesic word in d*. By the 
results of the two previous sections we may assume that o does not contain any 
inverse pairs, Dehn words, far-corners, strip words or two generator non-geodesics. 
Let o’ be of minimal length among all non-geodesic subwords of CO. Choose v’ E L(H) 
such that 0’ = V’. 

The presentation (X IW) does not in general satisfy the small cancellation hypo- 
thesis C(4kT(4). However, we will show that there is an equality W-diagram, M, for 
the words v’ and o’, that does satisfy C(4)-T(4). 
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First construct a new presentation for H. Recall that for each distinct pair of 
generators, xi, xjE!X, Hij is the group given by the presentation (Xi, Xjl rij). For each 
pair (i, j), let P’ij be the set of all cyclically reduced words in JZZ$ which are equal to the 
identity in Hij. Define Y = Ui + jYij. Clearly, (3 1 Y) is another presentation for the 
group H. Notice that the presentation (X 19’) is infinite. In their paper [2], Appel and 
Schupp study this presentation. They show that for any word u, an Y-diagram can be 
constructed satisfying the following properties: the boundary label is U, the diagram 
satisfy C(8), and each interior edge is labeled by one syllable. Recall that a syllable is 
a power of a single semigroup generator. 

Let MY be an equality Y-diagram for the words v’ and 0’. Let p,, and pf be the 
point of 8M, where the two words o’ and v’ begin and end, respectively. As noted 
above, we can assume that MY satisfies C(8) and each interior edge is labeled by 
a single syllable. 

Lemma 38. The Y-diagram M, is a basic thin equality diagram. Furthermore&or each 
region D, aDno’ and aDnv’ are edges which are labeled by at least two syllables. Thus, 
both generators appear on each of dDnw’ and aDnv’. 

Proof. To begin with, note that the Y-diagram, M, satisfies C(8). The property C(8) 
implies C(6), thus by Corollary 9, x*(4 - i(D)) 2 6. 

First we will prove the result in the case the word w’ represents the identity in H. In 
this case, v’ E L(H) is the empty word. The diagram is therefore labeled by the word 0’. 
If the diagram has one region, then o’ is a two generator word and is therefore a two 
generator non-geodesic. This contradicts the choice of o, since we have assumed that 
o does not contain two generator non-geodesics. If the diagram has more than one 
region, then because x*(4 - i(D)) 2 6, there are at least two simple boundary regions 
with three or fewer syllables on their bases. These regions must each have at least five 
syllables on their exteriors. Therefore, by Lemma 19, the bases are shorter then the 
exteriors. This means that o’ must have a subword which is a two generator 
non-geodesic, which again contradicts the choice of o. This completes the proof in the 
case that m’ represents the identity element. 

If M, contains a cut vertex which is touched by o’ more than once, then o’ is not 
minimal. If MY contains a cut vertex which is touched by v’ more than once, then v’ is 
not a geodesic. If MY contains a cut vertex which touches both o’ and v’ then o’ was 
not minimal. Therefore MY has no cut vertices. 

Notice that M, must not contain any spikes since w’ and v’ are freely reduced. If 
MY begins or ends with a bridge to the point p. or the point pf, this will contradict the 
minimality of 0’. If the diagram contains a singleton strip then the label on the 
boundary of the singleton strip must not be within w’ or v’. Thus, any singleton strip 
must occur at the beginning of M,, at po, or at the end of MY, at pf. If MY begins or 
ends with a singleton strip remove the singleton strip from the diagram. Continue to 
remove singleton strips. The removed portion of the diagram will be thin. 
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Now suppose that this reduction procedure terminates with a one region diagram. 
Then the whole Y-diagram is thin. If the procedure terminates with any other 
subdiagram, Mb, then M> satisfies c*(4 - i(D)) 2 6. Since Mb has no spikes or 
singleton strips, any simple boundary region must have interior degree greater than or 
equal to two. But this implies that there are at least three simple boundary regions 
with interior degree two or three. One of these regions must have its entire exterior in 
o’ or v’. By Lemma 19, since the exterior contains at least five syllables and the base 
contains only two or three syllables, the interior is shorter than the exterior. This 
either contradicts the choice of o, which contains no two generator non-geodesics, or 
contradicts the choice of v’, which is a geodesics. Therefore, the reduction procedure 
must terminate with a one region subdiagram and the diagram is thin. 

Now we will show that for each region D of My, aDnd and aDnv’ each contain at 
least two syllables. Suppose, for example, that there is a region D such that aDnv’ does 
not contain two syllables. Then we can show that the other word w’ has a two 
generator non-geodesic subword. Notice that the labels on the interior edges of the 
region D are both at most one syllable. The label on aDno’ must be at least five 
syllables and the label on the rest of the region D is at most three syllables. Therefore 
by Lemma 19, the subword of w’ which labels aDno is a two generator non-geodesic. 
This is a contradiction, therefore aDnv’ must be labeled by at least a two syllable 
word. In a similar manner we can show that if aDno’ must be labeled by a two or 
more syllable word. This proves the lemma. 0 

Notice that Lemma 38 is the only place in this paper that requires that the Artin 
group be of extra-large type, as opposed to large type. 

The diagram MY is used to construct a C(4)-T(4) W-diagram. Each Y-region, D, is 
labeled by a word equal to the identity in one of the Hij. The presentations (xi, Xj ( rij) 
satisfy C(4)-T(4). Each of the Y-region can be filled in with a Wij-diagram. Denote 
this “filled in” diagram by M. This diagram M is an W-diagram, where W is the finite 
set of relators for the Artin group. In Lemma 40 we will show that M satisfies 
C(4)--T(4). However, before this we need to take care of a small detail. It is possible 
when filling in an Y-region, D, that two points of the boundary of an Y-region are 
pulled together to form a pinch. The next lemma will show that this situation will not 
occur when we fill in the diagram My. 

Lemma 39. Suppose that D is a Y-region, when filling in the region D with an 

92ij-diagram it is not possible to pinch together any two points of aD creating a cut 
vertex. 

Proof. Suppose that D is a Y-region. Then the label on aD is a cyclically reduced 
word in &ij representing the identity element in the group Hij. The boundary of 
D consists of the following boundary segments: aDnw’; aDnv’; the interior edge, s’, 
shared with the Y-region just before D; and the interior edge, s”, shared with the 
Y-region just after D. 
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If two points of aDno’ are pinched then the word m’ must contain a two generator 
word which is equivalent to the identity in the group Hij. Thus, w’ contains a two 
generator non-geodesic subword. But we have assumed that w’ does not contain two 
generator non-geodesic subwords, so this is a contradiction. Similarly, two points of 
dDnv’ cannot be pinched. Suppose that a point of aDnw’ is pinched to a point of 
one of the interior edges s’ or s”. This would imply that there is a two generator 
subword, y, of w’ which is equivalent to a one syllable word in the group H,. By 
Lemma 19, the word y is a two generator non-geodesic, again a contradiction. 
Similarly, a pinch between a point of aDd and a point of an interior edge of D leads 
to a contradiction. 

If a point of one interior edge pinches to a point of the other interior edge then the 
words on aDnw’ and aDnv’ are equivalent to words of two syllables and again by 
Lemma 19, o’ and v’ contain two generator non-geodesics, which is a contradiction. 

Finally, it is not possible for a pinch to occur between two points of the same 
interior edge. This would imply that there is an Wij-subdiagram labeled by one 
syllable. But by Lemma 19, there are no words equal to the identity which have less 
than 2mij syllables, except the empty word. fJ 

Lemma 40. The B-diagram, M, satisfies C(4)-T(4). 

Proof. First we show that M is T (4). Any interior vertex of M which was an interior 
vertex of one of the Wij-diagrams will have degree four since each of the Hij satisfy 
T(4). Suppose u is an interior vertex of M which is not an interior vertex of one of the 
aij-diagrams. The vertex u must lie along one of the interior edges of the Y-diagram. 
Since each interior edge of the Y-diagram is labeled by a power of a single semigroup 
generator, as a boundary vertex of a C%ij-diagram the vertex a must have at least degree 
three (no relator has two consecutive generators). This is true for both of the 
Wij-diagrams which border the interior edge of the Y-diagram. Therefore, the degree 
of u in the W-diagram is at least four. This shows that M satisfies T(4). 

Let D be an almost interior region of M. If D is an almost interior region of one of 
the %?ij-diagrams then the interior degree of D is at least four in the Wij-diagram and is 
therefore at least four in the diagram M. Suppose D was a boundary region of an 
5?ij-diagram. Then since D has no edges on the boundary of the &?-diagram, M, the 
exterior of D relative to the &?ij-diagram must lie along one of the interior edges of the 
Y-diagram, My. Thus, in the CJI?ij-diagram, the exterior of D is a single edge labeled by 
a single letter. By the form of the relators, the base of D in the aij-diagram must 
consist of at least three edges. Therefore, in the g-diagram, M, the interior degree of 
D is at least four. 0 

If the g-diagram M is thin then by Proposition 21, there is a word that 2m-refutes 
o. Therefore, we concentrate on the case when M is not a thin equality diagram. 
Assume that M is not thin. Notice that the two boundary words do not label strips on 
spikes. Therefore, M is a diagram like those discussed in Section 6. Let Mth be the first 
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thick section of M. Let 0” be the label on co’naMth and v” be the label on v’naM,,,. Let 
F and L be the first and last regions of Mth. Let the sequences A = { W 1 , W2, . . . , W,} 

and V= {V,, V2, . . . , V,} be the sequences of boundary regions along the top and 
bottom of Mth. The diagram Mth will look like the diagram in Fig. 5. 

It is clear by Lemma 38 that the diagram Mth is a sequence of 91?i,-subdiagrams, 
where each subdiagram corresponds to one of the Y-regions of the original diagram 
My. Let {Mu, Mu, . . . , M,} be the sequence of Wij-subdiagrams of Mth. The se- 
quences A and V can be divided into subsequences {Aa, A1, . . . ,A,,} and 

{I% v11, ... , V’} where each of the subsequences Ai and F consist of regions from the 
subdiagram Mi. 

Lemma 41. Suppose a = aMinaMi+I for some 0 I i I n - 1. Suppose D is an 9% 
region of the diagram Mtb. Then aDna is a consecutive portion of aD. Furthermore, 
aDna is no more than a single edge labeled by a single letter. 

Proof. Suppose that an W-region D touches a at two or more non-consecutive 
portions of aD. Then there will be a subdiagram K, of regions labeled by the same 
relator as D, bounded by the region D and a. The boundary of K is contained in aD 
and a. The subdiagram DuK is an %?ij-diagram and contains more than one region. 
By Corollary 11, there are at least two disjoint strips in the diagram DuK. This 
implies that the label on a contains a strip word. But a is labeled by a single syllable 
and cannot contain a strip word. Therefore, all %‘!-regions touch a in a consecutive 
portion of their boundary. 

Since the syllables of all relators are one letter long, it is clear that aDna is no more 
than a single edge labeled by a single letter. 0 

Most of the remaining argument will focus on the structure of the first %?iJ- 
subdiagram M,,. Suppose that mij is the half length of the relator labeling the regions 
of MO. Consider the sequences A,-, = ( W, , W,, . . . , Wk} and V0 = {VI , V,, . . . , &}. 

Let a0 be the aMonaM1. The next three lemmas state simple facts about the 
boundary regions of MO. 

Lemma 42. The regions Wk and V, each have a boundary edge in ao. These regions 
are simple boundary regions of MO, i(Wk, MtJ = i(W,, MO) + 1, and i(V,, Mth) = 
i(Vt, MO) + 1. 

Lemma 43. Any regions of A0 and Vo, other than W, and Vt, that touch a0 are 
non-simple boundary regions of MO. 

Lemma 44. Simple boundary regions of MO are either simple boundary regions of Mth 
or interior regions of Mth. 
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There may be a set of simple boundary regions of MO which are interior regions of 
Mth. These are a subset of the regions of MO which touch ao. Relative to MO, these 
regions all have interior degree three and have exterior labeled by a single letter. 
Denote this set of regions by @. 

Lemma 45. Either z(Ao, Mth) = 1 or r( Vo, Mth) = 1. 

Proof. To prove this lemma we will examine the strips of the diagram MO. 
If W, is a singleton strip of MO then it is a corner in the diagram Mth. This implies 

that r(d,, Mth) = 1. Similarly if Vr is a singleton strip of MO then z( Vo, Mth) = 1. If 
a compound strip of MO begins in A0 and ends with the region Wk, then Wk is a side 
region in the diagram Mth and z(Ao, Mth) = 1. Similarly, if a compound strip of MO 
begins in V. and ends with the region VI, then the region VI is a side region of Mth and 

r(Vo6, MtiJ = 1. 
The only regions of MO which can be singleton strips are the regions F, W,, and V,. If 

any other region of A0 or V. were a singleton strip then there would be a Dehn word in 
o’ or v’. And the regions of @ all have interior degree three in MO so cannot be singleton 
strips. In the above paragraph we have proved the lemma in the case when W, or V, is 
a singleton strip. Therefore, assume that W, and V, are not singleton strips of MO. 

Suppose that F is a singleton strip of MO. By Corollary 11 there are at least two 
compound strips of MO. If one of the compound strips is made up of regions from do, 
then the compound strip must end at the region W, or else the word o’ would contain 
a strip word. As in the first paragraph of this proof, this implies that $A,, Mth) = 1. 
Similarly, a compound strip made up of regions from V. implies r( Vo, Mth) = 1. Thus, 
we may assume that at least one strip ends with a region from @. But the regions of 
Qi are not corners of MO, they all have interior degree three. So F cannot be a singleton 
strip. 

Suppose that i(F, MO) > 1. Then by Corollary 11 there are four compound strips of 
MO. Again an argument similar to that in the preceding paragraph will lead to 
a contradiction. This proves the lemma. 0 

Proof of Proposition 37. If the diagram M is thin then by Proposition 21 there is 
a word that 2m-refutes w. Suppose that M is not thin. We will consider four distinct 
cases, that exhaust all possibilities. 

Case 1: ~3Fc-d includes an edge and z(Ao, Mth) = 1. 
By the methods used in Lemma 35, we can show that every region of A0 has degree 

four and the poles for each region lie at the north and south vertices. 
As was done in Section 8, the poles can be used to show the following: The label 

from the vertex ri to the vertex rs, along ext(Ao, MO), has the same length as the label 
from the vertex r2 to the vertex r4, along base(Ao, MO). The edge e4 is labeled by 
a single letter. Thus, the edge e3 is labeled by a word of length mij - 1. Because w’ does 
not contain two generator non-geodesics, le, 1 = 1 and le,l = mij - 1. (The notation 
leil denotes the length of the label on the edge ei.) 
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Fig. 19. The regions of A0 of MD in case 1. 

Let y be the label on ext(&, M,) and let y’ be the label on base(&, Ma). Let p be 
the word obtained from o by replacing the occurrence of y in o by 7’. By examining 
the diagram in Fig. 19 it is easy to see that the paths w and p are mij-parallel. 
Therefore, by Lemma 30, the paths o and p are 2mij-fellow travelers. 

The first two letters of y’ have different colors, because the y’ starts by labeling an 
edge of length mij - 1 and we are assuming that each mij is four or more. Thus, it is 
easy to see that o contains an excessive word with y and y’ the associated high and low 
words. Therefore, by Corollary 6, p<o and thus p 2mij-refutes w. 

Case 2: 8Fnv’ includes an edge and r( V,,, Mth) = 1. 
Just as in Case 1, we can find an excessive subword of v (and a word p which 

2mij-refutes v). But by Lemma 5, this is not possible because VEL(G). 
Case 3: i?Fno’ includes an edge and z( Ve, Mth) = 1. 
Notice that we may assume that i3Fnv’ does not include an edge; otherwise the 

result follows from Case 2. The following proof depends on the location of the first 
corner region of A. 

Suppose that the first corner of A occurs in Me. Then by Lemma 34 the poles for 
each region of A, up to and including the corner, are north and south. Furthermore, 
one of the poles for the region F is at the vertex u1 of Fig. 20. If the other pole is within 
the edge e5, then the word o’ would contain a strip word. We have assumed this is not 
the case.Thus, the other pole for the region F must be at the vertex u2. By Lemma 14, 
u3 is a pole for the region Vi. 

Now by using a similar argument as in the proof of Lemma 35, we can show that 
every region of Vc, has degree four and the poles for each region lie at the north and 
south vertices. Because 1 e6 1 = 1, we have 1 e7 1 = mij - 1. Since v’ is a geodesic we have 

jeJl = mij- 1 and Ied1 = 1. 

By the positioning of the poles we have 

Jell = mij- 1 and le,l = 1. 

Let Sz = {IV,, W2, . . . , W,} be the initial subsequence of regions of A, up to 
Wh the first corner. If h = 1, then the first region of A is a corner. Since le21 = 1 and 
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. . v . 
Fig. 20. The regions in Case 3. 

Fig. 21. The sequence Q. 

8Fno’ includes an edge, the word o’ must contain a far-corner. But we have assumed 
this is not the case. 

If h > 1, then consider Fig. 21. Let 1 be the label on ext(R) and let A’ be the label on 
base(Q). Let p be the word obtained by replacing the occurrence of 1 in o by A’. The 
dark edges in Fig. 21 will have the same length labels. Notice that les 1 = mij - 1 and 
legI = 1, because any other values would imply that w’ is a two generator non- 
geodesic, which is a contradiction. From the figure it is easy to see that Lemma 30 
applies and thus p is a 2mi,-fellow traveler of o. Furthermore, since dFnw’ includes an 
edge, it is easy to see that o’ contains an excessive word with associated high and low 
words II and 1’. Thus by Corollary 6, p<o. Thus, the word p 2mij-refutes w. 

Now consider the case where the first corner of A is not in the subdiagram Mo. 
Suppose that the first corner is in the subdiagram MI. Let A = {W,, , W,,, 1, . . . , W,,+,} 

be the initial subsequence of Al up to and including the first corner. 
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Fig. 22. A One region. Fig. 23. ,4 more than one region. 

Suppose that A is one region long; see Fig. 22. The edge el must be labeled by 
a single letter, and the edge e2 is labeled by a word of length mij - 1 or less, where mij 
corresponds to the relator labeling the regions of Al. Thus, the ext(W,, Mth) is labeled 
by at least half a relator. We have assumed that o does not contain any Dehn words, 
thus ext(W,, Mth) must be labeled by a half relator. Let MIel be the subdiagram 
which precedes Ml in the diagram Mth. By Lemma 38, dMl _ 1 nw’ is labeled by at least 
two syllables. Thus it is easy to check that the word o’ contains a type two far corner, 
where the associated high word labels ext(W,,+,,, Mth). But we have assumed that 
o does not contain far-corners. Therefore, A must be longer than one region. 

Suppose A is longer than one region; see Fig. 23. The poles of the last region 
W ,,+,, must be north and south or o’ would contain a far-corner. Now we can work 
our way back down the sequence of regions, as was done in Lemma 34, to show that 
all the regions of A have north and south poles. The edge el is labeled by a single 
letter, thus 

(eIl = 1 and le,l = “ij- 1. 

Now by noticing that the dark edges in Fig. 23 have the same length, since we have 
assumed that w does not contain a two generator non-geodesic, 

le31 = 1 and ledI = mij - 1. 

Therefore, the label on ext(A, Mth) is the same length as the label on base(A, Mth). Let 
1 be the label on ext(A, M,,,), and let A’ be the label on base@, Mth). Let p be the word 
obtained by replacing the occurrence of I in w by the word 1’. By the Lemma 30 o and 
p are 2mi,-fellow travelers. By examining the diagram it is easy to see that o contains 
an excessive word, with high and low words 1 and A’, respectively. By Corollary 6, 
P<O. Therefore p 2mij-refutes w. 

Case 4: 8Fnv’ includes an edge and z(&, Mth) = 1. 
The same argument as in Case 3, will produce a word which 2mi,-refutes v. But by 

Lemma 5, this is not possible because v E L(G). This completes the proof. 0 
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10. L(G) is a regular bicombing 

At this point we have the necessary pieces to prove the main result of the paper, 
Theorem A, which states that Artin groups of extra-large type are biautomatic. By 
Proposition 2, it suffices to show that the group language L(H) is regular and is 
a bicombing of the group H. Proposition 46 states that L(H) is regular and Proposi- 
tion 47 states that L(H) is a bicombing of H. 

Proposition 46. For an Artin group of extra-large type H, the language L(H), deBned in 
Section 2, is a regular. 

Proof. Let m = max{mijlmij # CO }. We will show that each word WE L(H) is 2m- 
refuted. In Propositions 32,33 and 37, we have covered the cases for which o contains 
an inverse pair, Dehn word, far-corner, strip word, or a non-geodesic. Therefore we 
will assume that o does not contain any of these types of subwords. Take v E L(G) 
such that ? = 0. Construct an equality W-diagram, M, for the words v and w in the 
same way as was done in Section 9. 

If M is not thin then there is a first thick subdiagram Mth. If all the regions of 
Mth are labeled by the same relator, then the results of Section 8 show that there is 
a word which 2m-refutes o. If the regions of Mth are labeled by different relators then 
the results of Section 9 show that there is a word which 2m-refutes o. 

On the other hand, suppose the diagram M is thin. Because both o and v are 
geodesics, v is a 2mfellow traveler of o, by Lemma 21. Thus v 2m-refutes o. 0 

Proposition 47. For an Artin group of extra-large type H, the language L(H), dejked in 
Section 2, is a bicombing of H. 

Proof. Let m = max{mijlmij # CKJ }. Recall the definition of a bicombing of H. For 

any words v, OE L(H) and a, bEdu@ with G = 5, in the Cayley graph T,(H) the 
path w, starting at the origin, and the path v, starting at the vertex corresponding to 
the group element 6, are (2m + 1)-fellow travelers. 

Suppose that v and o are elements of L(H), and a and b are in &. Construct an 
equality W-diagram M for the words wa and bv as was done in Section 9. M will 
contain no spikes when considered as an equality diagram for at least one of the 
following pairs (oa, bv), (b-loa, v), (b-‘w, vu-‘), (w, bva-‘). 

Suppose that M is not a thin equality diagram. Then there is a subdiagram Mth as 
described in Section 6. If all the regions of Mth are labeled by the same relator then the 
results of Section 8 imply that o+!L(G) or v$L(G), which is a contradiction. If the 
regions of Mth are labeled by different relators then the results of Section 9 imply that 
o$L(G) or v$L(G), which is again a contradiction. Therefore M is thin. 

Because the equality diagram is thin and the maximum length of a relator is 2m, by 
Lemma 20 o and v lie in a m-Hausdorff neighborhood of each other. Since o and 
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v begin at most one unit apart and are geodesics, Proposition 1 shows that CO and v are 
(2m f 1)-fellow travelers. 0 
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